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The monochromatic �lters we use for observing the solar chromosphere are built from
Fabry-Perot etalons, consisting of two plane, parallel, highly re�ecting surfaces separated
by a small gap. These surfaces must be of excellent optical quality and it comes as no
surprise that the �lters are expensive gear. The more advanced "professional" or "research
grade" models are extremely expensive and we may wonder whether an extra $7000 for
choosing a 0.3 Å �lter instead of a 0.5 Å is worth the money. How can we make sure of
the actual performance of our �lters ?

We explain here an elementary testing method for Fabry-Perot etalons which can be
implemented with a modest equipment and some care. When illuminated by a broad source
of monochromatic light the etalon produces a system of interference rings. Measuring them
will allow estimating the two main features of the etalon, its full width at half maximum
(FWHM) and its free spectral range (FSR). Their ratio is the �nesse of the etalon.

1 The transmission factor of a Fabry-Perot etalon

Light entering the etalon undergoes mutiple-beam interference, due to the great number
of re�exions on the etalon surfaces. As a result most wavelengths are strongly attenuated
in the outgoing light while some others are much better transmitted, in spite of the high
re�ecting factor of the etalon surfaces. Because of this property etalons can be used as
monochromatic �lters.

We call transmission factor of the etalon the ratio of the transmitted intensity
divided by its maximum possible value. This factor T is given by the following formula
(the "Airy function"), explained in optics textbooks :

T =
1

1 + F sin2
�
2�nh
� cos r

� ; (1)

with the following notation (see �gure 1) :
� F = 4R=(1�R)2, where R is the re�ectivity of the etalon surfaces
� n is the refractive index of the gap (n = 1 for an air-spaced etalon, n � 1:6 for a
mica-spaced etalon)

� h is the gap spacing, expressed with the same unit as the light wavelength �, whence
(2�nh cos r)=� in radians

� r is the angle of refraction inside the etalon, related to the angle of incidence i by
Snell�s law sin i = n sin r (or simply1 r � i=n if i is small).

1We shall always write a = b for an exact formula and a � b for an approximate equality.
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For a given etalon F , n and h are �xed. Only �, i (and r) may vary ; the corresponding
variation of T will be discussed below. The maximum transmission factor T = 100%
is obtained when sin2(:::) = 0, that is

T = 100% when
2nh

�
cos r = k (2)

where k = 1; 2; 3; ::: is a positive integer. In practice k will be in the order of a few hundreds.
The half maximum T = 50% is obtained when F sin2(:::) = 1, that is sin(:::) = �1=

p
F

T = 50% when
2nh

�
cos r = k � ', with ' = 1

�
arcsin

1p
F
: (3)

In practice the re�ectivity R is 90% at least, thus F is large (F > 360) and we may take
the approximate value ' � 1=�

p
F = 1=(2F), where F is an important feature of the

etalon, called its �nesse and de�ned by

F = �

2

p
F =

�
p
R

1�R: (4)

2 The etalon as a monochromatic �lter

When the etalon is used as a monochromatic �lter, the light from a given point of the
Sun hits it under some angle of incidence i and we want to know which wavelengths of this
light are best transmitted by the �lter. For the sake of simplicity we consider here normal
incidence, thus i = 0, r = 0 and cos r = 1 ; to deal with other values of i it would su¢ ce to
replace the thickness h by h cos r. We are interested in the variations of the transmission
factor as a function T (�) of � only, as given by (1).

The graph of T (�) is the familiar comb-shaped curve (�gure 2). Its teeth correspond
to the wavelengths of maximum transmission. Combining the etalon with a blocking
�lter will select a single tooth of the comb and constitute a true monochromatic �lter.
The maxima T = 100% are obtained for speci�c wavelengths �k given by (2) and the
wavelengths ��k of 50% transmission are given by (3), namely

�k =
2nh

k
, ��k =

2nh

k + '
, �+k =

2nh

k � ' (5)

where k is a positive integer.
The interval between the consecutive teeth numbered k and k + 1 is called the free

spectral range (FSR) ; the larger it is, the easier it will be to isolate a single wavelength
with a blocking �lter. From (5) we obtain

FSR = �k � �k+1 =
�k�k+1
2nh

� �2k
2nh

: (6)

In practice �k+1 is close to �k and we can use the latter approximate value.
The width of a single tooth is called the fullwidth at half maximum (FWHM) ; the

smaller it is, the narrower will be the transmitted band... and the higher the price. From
(5) we have

FWHM = �+k � �
�
k =

4nh'

k2 � '2 �
�2k
2nhF : (7)
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In practice k and F are large, '2 is negligible compared to k2 and we can use the approxi-
mate value. An important relation then follows from (6) and (7) :

F � FSR

FWHM
; (8)

ratio of the etalon�s FSR to its FWHM, which explains the name "�nesse" given to the
number F .

3 The etalon on a test bench

Here the etalon is not illuminated by the Sun but by a broad monochromatic source,
a hydrogen spectral lamp of wavelength � = 6562:8 Å if we are testing a H� �lter. As
above, each ray hitting the etalon with an angle of incidence i (such as the ray 0 in �gure
1) undergoes multiple re�ections inside it and gives rise to multiple outgoing parallel rays
1, 2, 3,... in the same direction i. Interference of these rays creates a dark or bright spot in
this direction, which can be imaged with a camera lens focused at in�nity, placed behind
the etalon (�gure 3). The camera sensor will show a pattern of concentric bright rings
(�gure 4), each ring being produced by all rays from a direction of maximal transmitted
intensity.

Thus we are now interested in the variations of the transmission factor as a function
T (i) of i only, as given by (1) for a �xed � (the wavelength of the spectral lamp). Scanning
a pro�le of the picture along a diameter will show the graph of T (i), still comb-shaped
(�gures 5 and 6) though di¤erent from the previous one. Careful measurements of this
pro�le allow to compute the etalon�s FSR and FWHM as we now explain.

The �lter is often tuned on a wavelength slightly greater than H� so that tilting it by
some (small) angle i1 will tune it on H�. The graph of T (i) then looks like �gure 5 ; the
�rst maximum is obtained for i = i1, which gives the radius of the �rst ring of the pattern.
If our �lter is exactly tuned on the H� line the wavelength � of the lamp coincides with
one of the �k�s of §2. Then i1 = 0 and the graph of T (i) looks like �gure 6.

Let d1; d2; ::: be the diameters of the successive bright rings on an image taken with a
lens of focal length f . Considering the �rst rings only, the corresponding angles of incidence
i1; i2; ::: are small and we may use approximate formulas as follows :

� measure the diameters d1; d2; :::
� compute the angles im � dm=2f for m = 1; 2; :::(in radians)
� compute �m = i2m+1 � i2m
� the free spectral range of the etalon is then FSR � ��m=2n2.

Let us explain this procedure. The refracted angles are rm � im=n and, according to (2),
the number

2nh

�
cos rm �

2nh

�

�
1� i2m

2n2

�
must be an integer if the incidence im produces a bright ring. The next bright ring will
correspond to the next integer and, taking the di¤erence,

�m = i
2
m+1 � i2m �

n�

h
: (9)
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This number �m may be seen as an evaluation of the distance between the consecutive
rings numbered m and m + 1, in analogy with the free spectral range of §2. In our ap-
proximation (valid for the �rst few rings) it has the same value for m = 1; 2; ::: ; we may
therefore replace a single �m by the average of �1;�2; ::: to reduce the measurement
errors. It is related to the free spectral range by the approximate formula

FSR � �

2n2
�m , (10)

which follows from (6) and (9), the �k�s of §2 being close to the wavelength � of the lamp.

A similar method gives the FWHM. We need here the diameters d+m and d�m of the
�rst rings, measured at half maximum height on the ring pro�le (�gure 5) :

� measure the diameters d�1 ; d
+
1 ; d

�
2 ; d

+
2 ; :::

� compute the angles i+m � d+m=2f and i�m � d�m=2f for m = 1; 2; ::: (in radians)
� compute �m = (i+m)

2 � (i�m)
2

� the FWHM of the etalon is then FWHM � ��m=2n2.

Let us explain. According to (3), the number

2nh

�
cos r�m �

2nh

�

 
1� (i

�
m)

2

2n2

!

must be an integer plus or minus ' � 1=(2F) where F is the �nesse. Then, taking the
di¤erence between the + and � expressions,

�m =
�
i+m
�2 � �i�m�2 � n�

hF : (11)

This number �m may be seen as an evaluation of the thickness of the m-th ring, in analogy
with the FWHM of §2. In our approximation (valid for the �rst few rings) it has the same
value for m = 1; 2; ::: ; we may therefore replace a single �m by the average of �1; �2; ::: to
reduce the measurement errors. It is related to the full width at half maximum by the
approximate formula

FWHM � �

2n2
�m , (12)

which follows from (7) and (11). Comparing the above equations we check that

FSR=FWHM � �m=�m � F

as obtained in (8).

Conclusion. Knowing the index n of the gap (n = 1 for an air-spaced etalon, n � 1:6 for
a mica-spaced etalon) and the wavelength � of the spectral lamp, measuring the diameters
dm of bright rings gives its FSR by (10) and its spacing h by (9). Measuring the diameters
d�m at half maximum gives its FWHM by (12) and its �nesse by (11).
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